VIA EMAIL

July 20, 2012 File No. 04.0029307.00

380 Harvey Road Manchester New Hampshire 03103-3347 603-623-3600 FAX 603-624-9463 www.gza.com Ms. Amy Daigneault Pretreatment Coordinator Lowell Regional Wastewater Utility 451 First St. Blvd. (Rte 110) Lowell, Massachusetts 01850

Re: Monthly Self Monitoring Report

June 2012

Merrimack Station

Public Service Company of New Hampshire

Bow, New Hampshire

Dear Ms. Daigneault:

On behalf of Public Service Company of New Hampshire (PSNH), GZA GeoEnvironmental, Inc. (GZA) is pleased to submit the attached Self-Monitoring Report (SMR) for the period June 1, 2012 through June 30, 2012. This SMR is intended to satisfy Conditions 7 and 8 of the Interim Discharge Authorization (IDA) issued to PSNH by the Lowell Regional Wastewater Utility (LRWU), dated March 29, 2012. The analysis of the softened Stream B sample collected on June 14, 2012 was performed in accordance with the United States Environmental Protection Agency (EPA) draft Standard Operating Procedure (SOP) for trace metals analysis of flue gas desulfurization (FGD) wastewater. The SOP is described below.

The attached **SMR Summary Sheet** summarizes the analytical results for all required parameters as outlined in Condition 8 of the IDA. The attached **Table 1** compares the results to the LRWU's Local Sewer Discharge Limits. The results indicate that pollutant concentrations were within the limits. Wastewater flow was approximately 48,000 gallons for the monitoring period and was estimated based on the actual number of tanker trucks sent to LRWU from June 1, 2012 through June 30, 2012 and tanker capacity.

Also included with this monthly report is an analytical data report for a non-contact cooling water sample collected on June 7, 2012, a waste stream which was recently approved by LRWU for discharge under the IDA dated March 29, 2012. This waste stream was not transported to LRWU in the month of June 2012, but the analytical data reports are being provided as a courtesy.

ANALYTICAL DISCUSSION

FGD wastewater requires specialized analytical techniques to overcome matrix interferences for analysis of certain trace metals. To assist you in evaluating this issue further, we offer an excerpt below from the EPA web site and a link to their draft SOP for trace metals analysis of FGD wastewater that contains further guidance.

LABORATORY ANALYSIS OF FGD WASTEWATER

Wastewater from FGD systems can contain constituents known to cause matrix interferences. EPA has observed that, during inductively coupled plasma—mass spectrometry (ICP-MS) analysis of FGD wastewater, certain elements commonly present in the wastewater may cause polyatomic interferences that bias the detection and/or quantization of certain elements of interest. These potential interferences may become significant when measuring trace elements at concentrations in the low parts per billion range.

As part of a recent sampling effort for the steam electric power generating effluent guidelines rulemaking, EPA developed an SOP that was used in conjunction with EPA Method 200.8 to conduct ICP-MS analyses of FGD wastewater. The SOP describes critical technical and quality assurance procedures that were implemented to mitigate anticipated interferences and generate reliable data for FGD wastewater. EPA regulations at 40 CFR 136.6 already allow the analytical community flexibility to modify approved methods to lower the costs of measurements, overcome matrix interferences, or otherwise improve the analysis. The draft SOP developed for FGD wastewater takes a proactive approach toward looking for and taking steps to mitigate matrix interferences, including using specialized interference check solutions (i.e., a synthetic FGD wastewater matrix). EPA's draft SOP is being made available to laboratories contemplating ICP-MS analysis of FGD wastewater, either for adoption as currently written or to serve as a framework for developing their own laboratory-specific SOPs. For further information, see:

• Standard Operating Procedure: Inductively Coupled Plasma/Mass Spectrometry for Trace Element Analysis in Flue Gas Desulfurization Wastewaters (30 pp, 174K), http://water.epa.gov/scitech/wastetech/guide/upload/steam_draft_sop.pdf, EPA May 2011.

Considering that specialized analytical techniques are necessary to overcome matrix interference for certain analysis of trace metals in FGD wastewater, we recommend any analysis on FGD wastewater be conducted in accordance with the EPA draft SOP for trace metals analysis of FGD wastewater.

Should you have any questions concerning this report, please do not hesitate to contact me at (603) 232-8744.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Konold a. Breton

Ronald A. Breton, P.E.

Senior Principal

RAB:tmd

 $p:\label{p:condition} $$p:\label{p:condition} $$p:\l$

Attachments: SMR Summary Sheet

Table 1

Analytical Data Reports

LOWELL REGIONAL WASTEWATER UTILITY

Industrial Sewer User Self-Monitoring Report Summary Sheet

Facility Information	Company Name	Public Service of New Ham	pshire	
				NA (Interim Discharge
racility Address _	97 River Road Bow, New Hamp	shire	Permit No	o. Authorization)
Facility Contact _	Bradley Owens		Telephone _(603) 224	1-4081
********	Use A Separate Sui	mmary Sheet For Each Mo	onitoring Point	
Monitoring Report: Reporting Period	Monitoring Point End of	pretreatment process	Submittal DateJ	uly 20, 2012
(circle applicable):	Baseline A	nnually Semi-Annuall	y Quarterly (Monthly Re-Sample
Report	ing Period Start DateJune	1, 2012 Reporting	Period End Date	June 30, 2012
Sample Analysis:	Certified Analytical Lab Ea	stern Analytical, Inc. (EAI)		
Authorized Re	p. Lorraine Olashaw		Certification No. 101	2
Analytical Sub	Contractor Frontier Global Sc	iences	Certification No. <u>E87</u>	7575
Sample Collection:	Sampler (Lab/Self/Otl	her) Paul Pepler, GZA		
S	ample Type(s) (circle all that app	oly): Grab Tin	me Composite	Flow Composite
Grab Sampling:	Sample Date <u>6/14/2012</u>		Sample Time 12:05	pm
pH (Standard Units)9.0	Instantaneous Flo	w Rate (GPM) <u>N/A</u>	
Composite Samplin	g: Start Date/Time N/A	S	top Date/Time N/A	
No. Aliquots	N/A Aliquot Volu	ume N/A	_ Sample Volume _ N	I/A
Flow Data: Sam	pling Interval Volume (Gal)		y Flow Rate (GPD)	600 (Average of discharge days)
Monitoring Pe	riod Industrial Wastewater Flow	Stream A: 0, Stream G(Gal) Softened Stream B		[X] Estimate
Monitor	ing Period Start DateJune 1,	2012 Monitoring	Period End Date <u>Jun</u>	e 30, 2012

Refer to Self-Monitoring Report Instructions for details on completing this SMR Summary Sheet

LOWELL REGIONAL WASTEWATER UTILITY Industrial Sewer User Self-Monitoring Report Summary Sheet

Submit All Chains of Custody and Laboratory Result Sheets With SMR Summary Sheet

Analytical Results:

Parameter	Analysis Date	Result (mg/L)	Parameter	Analysis Date	Result (mg/L)
BOD			Copper	6/21/2012	0.00595
COD	06/19/2012	160	Cyanide (Total)	6/18/2012	<0.01
O&G 413.1/1664			Fluoride		
TSS			Lead	6/21/2012	0.000452
TOC *			Mercury	6/22/2012	0.00000154
TTO ** 624 / 8260B - 625 / 8	3270		Molybdenum	6/21/2012	0.0896
Aluminum	6/21/2012	0.0884	Nickel	6/21/2012	0.00410
Antimony			Nitrogen (Kjeldahl)		
Arsenic	6/21/2012	0.00123	Phenois (Total)		
Barium			Selenium	6/21/2012	0.00705
Beryllium			Silver	6/21/2012	<0.000100
Cadmium	6/21/2012	0.000132	Thallium		
Chromium (Hexavalent	t)		Zinc	6/21/2012	0.0243
Chromium (Total)	6/21/2012	0.00092	Other: see Table 1		

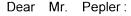
BOD = Biochemical Oxygen Demand	COD = Chemical Oxygen Demand	O & G = Oil & Grease	TSS = Total Suspended Solids	TTO = Total Toxic Organics
*TOC (Total Organic Carbon) = is the amo				ity. TOC measures both the tota
carbon present as well as the inorganic ca	irbon (IC). Subtracting the inorganic cart	oon from the total carbon yi	elds TOC.	
**TTO's = Summation of all quantifiable v	alues greater than 0.01 mg/L for toxic or	ganics listed in 40 CFR 413	3.02(i). TTO's include PCB's (Poly-C	hlorinated Biphenyls), VOC's
(Volatile Organic Compounds), SVOC's (S	Semi-Volatile Organic Compounds). PCI	B's, VOC's and SVOC's sh	all be analyzed using EPA Methods 6	508, 624, and 625, respectively.

Zero Discharge / Self-Monitoring (initial if applicable):	
No industrial wastewater from permitted proces	ses has been discharged to sewer during the monitoring period
No sampling has been conducted on permitted	sewer discharges during the monitoring period
Certification Statement:	
"I certify, under penalty of law, that this document and all attachments we designed to assure that qualified personnel properly gather and evaluate who manage the system, or those persons directly responsible for ga knowledge and belief, true, accurate, and complete. I am aware that the possibility of fine and imprisonment for knowing violations."	e the information submitted. Based on my inquiry of the person or persor athering the information, the information submitted is, to the best of m
Bradley Owens	Station Manager
Printed Name of Authorized Representative	Title / /
5	7/20/2012
Signature of Authorized Representative	Date

TABLE 1 SUMMARY OF SOFTENED STREAM B CONCENTRATIONS COMPARED TO LOWELL SEWER DISCHARGE LIMITS

Public Service Company of New Hampshire Merrimack Station Bow, New Hampshire

PARAMETER	LOWELL SEWER DISCHARGE LIMITS (mg/L)	SOFTENED STREAM B RESULTS 6/14/2012 (mg/L)
Aluminum	24.69	0.0884
Arsenic	0.556	0.00123
Cadmium	0.056	0.000132
Chloride	-	320
Chromium (T)	8.108	0.00092
COD	-	160
Copper	3.124	0.00595
Cyanide (T)	1.895	< 0.01
Iron	-	0.595
Lead	0.857	0.000452
Manganese	-	0.0699
Mercury	0.004	0.00000154
Molybdenum	-	0.0896
Nickel	1.541	0.00410
рН	5.0-9.5	9.0
Selenium	-	0.00705
Silver	0.053	< 0.000100
Zinc	4.959	0.0243


Paul Pepler GZA GeoEnvironmental, Inc. (NH) 380 Harvey Road Manchester, NH 03103

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 111277

Client Identification: PSNH-MK

Date Received: 6/14/2012

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

< : "less than" followed by the reporting limit

> : "greater than" followed by the reporting limit

%R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely.

Lorraine Olashaw, Lab Director

7.5.12

ate

of pages (excluding cover letter)

EAI ID#: **111277**

Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: PSNH-MK

Temperature upon receipt (°C): 6

Received on ice or cold packs (Yes/No): Y

Acceptable temperature range (°C): 0-6

Sample ID

Date Date

Sample % Dry

Received Sampled Matrix Weight Exceptions/Comments (other than thermal preservation)

111277.01

Lab ID

Softened Stream B WW

6/14/12 6/14/12

aqueous

Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

All results contained in this report relate only to the above listed samples.

References include:

- 1) EPA 600/4-79-020, 1983
- 2) Standard Methods for Examination of Water and Wastewater: Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998
- 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- 4) Hach Water Analysis Handbook, 2nd edition, 1992

LABORATORY REPORT

160

EAI ID#: 111277

Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: PSNH-MK

COD

Sample ID: Softened Stream B WW Lab Sample ID: 111277.01 Matrix: aqueous **Analysis** Date Sampled: 6/14/12 Units Date Time Method Analyst 6/14/12 Date Received: Chloride mg/L 320 6/18/12 12:32 4500CIE DLS Cyanide Total < 0.01 mg/L 6/18/12 10:45 4500CNE KJR

mg/L

6/19/12 9:10

H8000 KJR

EAI ID#: 111277

Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: PSNH-MK

Parameter Name	Blank	LCS	LCSD	Date of Units Analysis	Limits RPI) Method
Chloride	< 1	24 (97 %R)	25 (99 %R) (2 RPD)	mg/L	90 - 110 20	4500CIE
Cyanide Total	< 0.01	0.25 (100 %R)		mg/L 6/18/12	85 - 115 20	4500CNE
COD	< 10	89 (89 %R)	110 (108 %R) (19 RPD)	mg/L 6/19/12	85 - 115 20	H8000

Samples were analyzed within holding times unless noted on the sample results page.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

Exceptions to the above statements are flagged or noted above or on the QC Narrative page.

*/! Flagged analyte recoveries deviated from the QA/QC limits.

11720 North Creek Parkway North, Suite 400 Bothell, WA 98011

Ph: 425-686-1996

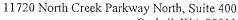
Fx: 425-686-3096

29 June 2012

Jeff Gagne Eastern Analytical, Inc 25 Chenell Drive Concord, NH 03301

RE: Merrimack Station 200.8

Lig Sisha


Enclosed are the analytical results for samples received by Frontier Global Sciences. All quality control measurements are within established control limits and there were no analytical difficulties encountered with the exception of those listed in the case narrative section of this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Liz Siska

Project Manager

Bothell, WA 98011 Ph: 425-686-1996

Fx: 425-686-3096

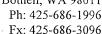
ANALYTICAL REPORT FOR SAMPLES

Laboratory: Frontier Global Sciences, Inc.

SDG:

Client: Eastern Analytical, Inc

Project: Merrimack Station 200.8


Sample ID	Lab ID	Matrix	Date Sampled	Date Received
Softened Stream B WW	1206226-01	Water	14-Jun-12 12:05	15-Jun-12 10:45

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 1 of 15 1206226 Final Report 06/29/2012

CASE NARRATIVE

SAMPLE RECEIPT

Samples were received at Frontier Global Sciences (FGS) on June 15th, 2012. The samples were received intact, on-ice with temperatures measured at 8.2 degrees Celsius.

SAMPLE PREPARATION AND ANALYSIS

Samples were prepared and analyzed for total metals in accordance with EPA Method 200.8 (modified).

Samples were prepared and analyzed for total mercury in accordance with EPA Method 1631E.

ANALYTICAL ISSUES

As an additional measure of the accuracy of the methods utilized for analysis and to check for matrix interference, matrix spikes (MS) and matrix spike duplicates (MSD) were digested and analyzed. All of the matrix spike recoveries were within the control limits with the exception of any QC flagged and described in the notes and definitions section of the following report.

A reasonable measure of the precision of the analytical methods utilized for analysis is the relative percent difference (RPD) between matrix spike and matrix spike duplicate recoveries and between laboratory control sample and laboratory control sample duplicate recoveries. All of the relative percent differences were within the control limits with the exception of any QC flagged and described in the notes and definitions section of the following report.

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Ph: 425-686-1996 Fx: 425-686-3096

CHAIN OF CUSTODY FORMS

GS Work O	rder: 1206226 Sample Receipt C	hecklist		Lab	eled By AMB Date: 6
Client:	Coston Aral An Date & Time Received: (A15/1	3 1700	D:	ate Logged In:	2110110
Project:	Received By:	(52 36	· .	agged In By:	47000
SDG:	# of Coolers Received:	3		S PM:	
				35 PIVI:	
Samples		dand	Ot	her (specify)	
Tracking/	Airbill Number(s): (85 17 X46	<u> </u>	Q 1	9744 18	≥ 1.1
Cooler Inf	formation	Yes	No	NA	Comments
900701 1111	The coolers do not appear to be tampered with:	TX	1		Johnnana
	Custody seals are present and intact:	1	` X	:	
	Custody seals signed by:			T X	
		one (Ami		Other (s	pecify).
Thermome	eler ID: 350 Correction Factor (GF): +0.3	degr	ees C		
Cooler 1:	Sarc Cooler 6:	°C		Cooler 11:	- *c
Cooler 2:	°C Cooler 7:	°C		Cooler 12:	·c
Cooler 3:	°C Cooler 8:	°C		Cooler 13:	- °C
Cooler 4:	*C Cooler 9:	°C		Cooler 14:	- °C
Cooler 5:	*C Cooler 10:	°C]	Cooler 15:	****************
COC 13 pre	sent and includes the following information for each sample: Sample ID/Sample Description:	Yes	No	NA T	Comments
	Date and Time of Sample Collection:	X			
	Sampled By:	marie	7 ×		
	Preservation Type:			L_X	
	Requested Analyses:	\perp \times		7	
	Required Signatures:				
	Internal chain of custody required:		$\perp \times$		
Sample Cor	ndition/Integrity	Yes	No	NA	Comments
	Sample containers were received intact:	$\perp \times$			
	Sample labels are present and legible:	1 %			
	Sample ID on container matches COC:	X			
	Correct sample containers used for requested analyses:	$\perp \times$			
	Samples received within holding time:	 			
	Sample volume sufficient for requested analysis:	1-X-			
	Correct preservative used for requested analyses:		+	1-2-1	
	pH of samples checked and within method requirements:	+	- 	1~	
i	If pH adjusted by laboratory, noted in logbook:	1 2/			
Inomalies/N	on-conformances:				
وم بدرست	cons commetaly melted com	. cr	cerat	- 6/15/	12 63
(/	at 1 111 many and But to the	FRA		11	1 . 2 . 2
inly on	e sample bottle received for both	mi.	and.	19-1504	the used is HOH
mple	e sample bothle received for both will be nitric preserved Then unication Person Contacted:	Spli	t fo	rtig an	d B-Cl preserva
lient Commu	unication Person Contacted:	Date/Tir	ne:		Method:
ing unalog /Di	sedutions			./,	mino motes 6/13/
iscussion/Re	SSOUDOIL			s- /	nmo notes 6/15,
					71.000 01.0012
		·····			

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ty Sister

Ph: 425-686-1996 Fx: 425-686-3096

CHAIN OF CUSTODY FORMS

EAI SRB# 111277 Project State: NH Project ID: 3902 Company Frontier Global Sciences, Inc. Address 11720 North Creek Pkwy Address Bothell, WA,98011 USA Account # Phone # 1.425.686.3096 Fax Number 1.425.686.3096 Eastern Analytical, Inc., 25 Chenell Dr. Concord, NH 03301		Sofiened Stream 8 W/W 6/14/2012 aqueous Surfa	CHAIN-OF-CUSTOD
Results Needed by: Preferred date QC Deliveribles A		aqueous Surface Weler Low Level Metals	CHAIN-OF-CUSTODY RECORD eastern analytical professional laboratory services The Date Sampled Matrix aParameters
Eastern Analytical Inc. PO Number: 39026 Please call prior to analyting, it RUSH surcharges will be applied to the state of the state		:	lical 1206226 ory services EAI SRB# 111277 Sample Notes

Frontier Global Sciences, Inc.

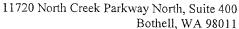
The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lig Siska

ANALYTICAL RESULTS

Softened Stream B WW

Matrix: Water


Laboratory ID: <u>1206226-01</u>

			* en r	** *.		***				
Analyte	Result	MDL	MRL	Units	Dilution	Batch	Sequence	Analyzed	Method	Notes
Aluminum	88.4	2.2	20.0	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Arsenic	1.23	0.26	0.75	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Cadmium	0.132	0.021	0.100	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Chromium	0.92	0.04	0.50	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Copper	5.95	0.05	0.50	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Iron	595	6.5	50.0	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Lead	0.452	0.020	0.200	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Manganese	69.9	0.04	0.50	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Mercury	1.54	0.17	1.01	ng/L	2	F206277	2F22007	06/22/12	EPA 1631E	FB-1631
Molybdenum	89.6	0.03	0.30	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Nickel	4.10	0.04	0.50	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Selenium	7.05	0.97	3.00	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	
Silver	ND	0.030	0.100	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	U
Zinc	24.3	0.16	2.00	μg/L	5	F206214	2F21012	06/21/12	EPA 200.8 Mod	

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ly Sisha

Ph: 425-686-1996

Fx: 425-686-3096

MATRIX DUPLICATES/TRIPLICATES

SOURCE: 1206224-02

Batch: <u>F206277</u>

Sequence: 2F22007

Preparation: BrCl Oxidation

Lab Number: F206277-DUP1

	Sample Concentration	Duplicate Concentration		%	RPD		
Analyte	ng/L	ng/L	MRL	RPD	Limit	Method	Notes
Mercury	50.25	49.53	5.05	1.43	24	EPA 1631E	

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Ph: 425-686-1996 Fx: 425-686-3096

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

SOURCE: 1206226-01

Batch: <u>F206214</u>

Sequence: 2F21012

Preparation: Closed Vessel Nitric Oven Digestion

Lab Number: F206214-MS/MSD1

Analyte	Sample Concentration (µg/L)	Spike Added (µg/L)	MS Concentration (μg/L)	MS % Recovery	Recovery Limits	Method	Notes
Aluminum	88.4	151.50	215.8	84.1	70 - 130 El	PA 200.8 Mod	**.
Chromium	0.92	7.0700	7.98	99.9	70 - 130 E)	PA 200.8 Mod	
Manganese	69.90	6.0600	74.73	79.6	70 - 130 El	PA 200.8 Mod	
Iron	594.8	505.00	1093	98.7	70 - 130 EI	PA 200.8 Mod	
Nickel	4.10	4.0400	8.05	97.8	70 - 130 EJ	PA 200.8 Mod	
Copper	5.95	4.0400	9.70	92.8	70 - 130 EI	PA 200.8 Mod	
Zinc	24.30	10.100	34.00	96.0	70 - 130 EI	PA 200.8 Mod	
Arsenic	1.23	15.150	17.10	105	70 - 130 EJ	PA 200.8 Mod	
Selenium	7.05	30.300	41.53	114	70 - 130 EI	PA 200.8 Mod	
Molybdenum	89.55	2.0200	89.68	6.45	70 - 130 EJ	PA 200.8 Mod	QM-02
Silver	ND	1.5150	1.395	92.1	70 - 130 EJ	PA 200.8 Mod	•
Cadmium	0.132	0.80800	0.960	102	70 - 130 EI	PA 200.8 Mod	
Lead	0.452	1.5150	1.981	101	70 - 130 E	PA 200.8 Mod	

Analyte	Spike Added (µg/L)	MSD Concentration (μg/L)	MSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Aluminum	151.50	224.0	89.5	3.72	70 - 130	20	EPA 200.8 Mod	
Chromium	7.0700	7.79	97.2	2.39	70 - 130	20	EPA 200.8 Mod	
Manganese	6.0600	73.99	67.4	1.00	70 - 130	20	EPA 200.8 Mod	QM-02
Iron	505.00	1043	88.7	4.75	70 - 130	20	EPA 200.8 Mod	
Nickel	4.0400	7.89	94.0	1.94	70 - 130	20	EPA 200.8 Mod	
Copper	4.0400	9.55	89.1	1.54	70 - 130	20	EPA 200.8 Mod	
Zinc	10.100	33.10	87.1	2.69	70 - 130	20	EPA 200.8 Mod	
Arsenic	15.150	16.89	103	1.25	70 - 130	20	EPA 200.8 Mod	
Selenium	30.300	36.92	98.6	11.8	70 - 130	20	EPA 200.8 Mod	
Molybdenum	2.0200	88.82	-36.2	0.965	70 - 130	20	EPA 200.8 Mod	QM-02
Silver	1.5150	1.403	92.6	0.621	70 - 130	20	EPA 200.8 Mod	7
Cadmium	0.80800	0.936	99.5	2.49	70 - 130	20	EPA 200.8 Mod	
Lead	1.5150	1.979	101	0.117	70 - 130	20	EPA 200.8 Mod	

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lig Siska

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

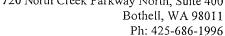
SOURCE: 1206226-01

Batch: <u>F206214</u>

Sequence: 2F21012

Preparation: Closed Vessel Nitric Oven Digestion

Lab Number: F206214-MS/MSD2


Analyte	Sample Concentration (µg/L)	Spike Added (µg/L)	MS Concentration (μg/L)	MS % Recovery	Recovery Limits	Method	Notes
Aluminum	88.4	1010.0	1032	93.4	70 - 130 EP	A 200.8 Mod	AS
Chromium	0.92	101.00	97.31	95.4	70 - 130 EP	A 200.8 Mod	AS
Manganese	69.90	101.00	166.3	95.5	70 - 130 EP	A 200.8 Mod	AS
Iron	594.8	505.00	1066	93.4	70 - 130 EP	A 200.8 Mod	AS
Nickel	4.10	126.25	123.4	94.5	70 - 130 EP	A 200.8 Mod	AS
Copper	5.95	126.25	122.7	92.5	70 - 130 EP	A 200.8 Mod	AS
Zinc	24.30	252.50	257.7	92.4	70 - 130 EP	A 200.8 Mod	AS
Arsenic	1.23	101.00	104.3	102	70 - 130 EP	A 200.8 Mod	AS
Selenium	7.05	101.00	110.0	102	70 - 130 EP	A 200.8 Mod	AS
Molybdenum	89.55	50.500	136.3	92.5	70 - 130 EP	A 200.8 Mod	AS
Silver	ND	5.0500	4.534	89.8	70 - 130 EP	A 200.8 Mod	AS
Cadmium	0.132	10.100	9.710	94.8	70 - 130 EP	A 200.8 Mod	AS
Lead	0.452	25.250	24.97	97.1	70 - 130 EP	A 200.8 Mod	AS

Analyte	Spike Added (µg/L)	MSD Concentration (μg/L)	MSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Aluminum	1010.0	1024	92.6	0.789	70 - 130	20	EPA 200.8 Mod	AS
Chromium	101.00	96.05	94.2	1.30	70 - 130	20	EPA 200.8 Mod	AS
Manganese	101.00	163.7	92.8	1.62	70 - 130	20	EPA 200.8 Mod	AS
Iron	505.00	1050	90.1	1.58	70 - 130	20	EPA 200.8 Mod	AS
Nickel	126.25	121.0	92.6	1.96	70 - 130	20	EPA 200.8 Mod	AS
Copper	126.25	120.5	90.7	1.83	70 - 130	20	EPA 200.8 Mod	. AS
Zinc	252.50	254.4	91.1	1.28	70 - 130	20	EPA 200.8 Mod	AS
Arsenic	101.00	102.2	100	2.02	70 - 130	20	EPA 200.8 Mod	AS
Selenium	101.00	108.2	100	1.64	70 - 130	20	EPA 200.8 Mod	AS
Molybdenum	50.500	135.3	90.5	0.744	70 - 130	20	EPA 200.8 Mod	AS
Silver	5.0500	4.492	88.9	0.947	70 - 130	20	EPA 200.8 Mod	AS
Cadmium	10.100	9.752	95.2	0.431	70 - 130	20	EPA 200.8 Mod	AS
Lead	25.250	24.98	97.1	0.0287	70 - 130	20	EPA 200.8 Mod	AS

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ly Sisha

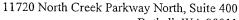
Fx: 425-686-3096

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

SOURCE: 1206224-02

Batch: <u>F206277</u>

Sequence: 2F22007


Preparation: BrCl Oxidation

Lab Number: F206277-MS/MSD1

Analyte	Sample Concentrati (ng/L)	Spike ion Added (ng/L)	Conce	MS ntration g/L)	MS % Recovery	Recovery Limits	Method	Notes
Mercury	50.25	204.00	23	35.6	90.9	71 - 125	EPA 1631E	
Analyte	Spike Added (ng/L)	MSD Concentration (ng/L)	MSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Mercury	204.00	224.5	85.4	4.80	71 - 125	. 24	EPA 1631E	

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bothell, WA 98011 Ph: 425-686-1996 Fx: 425-686-3096

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY AND RPD

SOURCE: 1206318-04

Batch: <u>F206277</u>

Sequence: 2F22007

Preparation: BrCl Oxidation

5.0000

6.67

Mercury

Lab Number: F206277-MS/MSD2

24

EPA 1631E

Analyte	Sample Concentrat (ng/L)		Conce	AS ntration g/L)	MS % Recovery	Recovery Limits	Method	Notes
Mercury	2.23	5.0000	6	.74	90.1	71 - 125	EPA 1631E	********
Analyte	Spike Added (ng/L)	MSD Concentration (ng/L)	MSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes

88.8

0.975

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

dy Jesta

LABORATORY CONTROL SAMPLE/ LABORATORY CONTROL SAMPLE DUPLICATE

RECOVERY AND RPD

Batch: F206214

Sequence: 2F21012

Preparation: Closed Vessel Nitric Oven Digestion

Lab Number: F206214-BS/BSD1

LCS Source: Blank Spike

Analyte	Spike Added (µg/L)	LCS Concentration (µg/L)	LCS % Recovery	Recovery Limits	Method	Notes
Aluminum	150.00	137.3	91.5	85 - 115	EPA 200.8 Mod	
Chromium	7.0000	6.47	92.5	85 - 115	EPA 200.8 Mod	
Manganese	6.0000	5.76	96.1	85 - 115	EPA 200.8 Mod	
Iron	500.00	470.6	94.1	85 - 115	EPA 200.8 Mod	
Nickel	4.0000	3.93	98.2	85 - 115	EPA 200.8 Mod	
Copper	4.0000	4.03	101	85 - 115	EPA 200.8 Mod	
Zinc	10.000	9.96	99.6	85 - 115	EPA 200.8 Mod	
Arsenic	15.000	14.14	94.3	85 - 115	EPA 200.8 Mod	
Selenium	30.000	29.45	98.2	85 - 115	EPA 200.8 Mod	
Molybdenum	2.0000	1.83	91.7	85 - 115	EPA 200.8 Mod	
Silver	1.5000	1.483	98.9	85 - 115	EPA 200.8 Mod	
Cadmium	0.80000	0.822	103	85 - 113	EPA 200.8 Mod	
Lead	1.5000	1.585	106	85 - 115	EPA 200.8 Mod	

Analyte	Spike Added (μg/L)	LCSD Concentration (µg/L)	LCSD % Recovery	% RPD	Recovery Limits	RPD Limit	Method	Notes
Aluminum	150.00	142.6	95.1	3.82	85 - 115	20	EPA 200.8 Mod	
Chromium	7.0000	6.41	91.6	0.979	85 - 115	20	EPA 200.8 Mod	
Manganese	6.0000	5.75	95.9	0.209	85 - 115	20	EPA 200.8 Mod	
Iron	500.00	465.3	93.1	1.14	85 - 115	20	EPA 200.8 Mod	
Nickel	4.0000	3.88	97.1	1.12	85 - 115	20	EPA 200.8 Mod	
Copper	4.0000	4.01	100	0.620	85 - 115	20	EPA 200.8 Mod	
Zinc	10.000	9.83	98.3	1.37	85 - 115	20	EPA 200.8 Mod	
Arsenic	15.000	14.33	95.5	1.33	85 - 115	20	EPA 200.8 Mod	
Selenium	30.000	29.96	99.9	1.71	85 - 115	20	EPA 200.8 Mod	•
Molybdenum	2.0000	1.82	90.9	0.946	85 - 115	20	EPA 200.8 Mod	
Silver	1.5000	1.457	97.1	1.77	85 - 115	20	EPA 200.8 Mod	
Cadmium	0.80000	0.804	101	2.10	85 - 113	20	EPA 200.8 Mod	
Lead	1.5000	1.561	104	1.57	85 - 115	20	EPA 200.8 Mod	

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ly Siska

Bothell, WA 98011 Ph: 425-686-1996 Fx: 425-686-3096

LABORATORY CONTROL SAMPLE/ LABORATORY CONTROL SAMPLE DUPLICATE

RECOVERY AND RPD

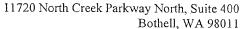
Batch: <u>F206277</u>

Sequence: 2F22007

Preparation: BrCl Oxidation

Lab Number: F206277-BS/BSD1

LCS Source: LCS


	Spike Added	LCS Concentration	LCS %	Recovery		
Analyte	(ng/L)	(ng/L)	Recovery	Limits	Method	Notes
Mercury	15.679	14.52	92.6	80 - 120	EPA 1631E	

	Spike Added	LCSD Concentration	LCSD %	%	Recovery	RPD		
Analyte	(ng/L)	(ng/L)	Recovery	RPD	Limits	Limit	Method	Notes
Mercury	15.679	14.71	93.8	1.32	80 - 120	24	EPA 1631E	

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

PREPARATION BLANKS

Instrument: ICPMS-6

Sequence: 2F21012

Preparation: Closed Vessel Nitric Oven Digestion

Lab Sample ID	Analyte	Found	MRL	Units	Batch	Method	Notes
F206214-BLK1	Aluminum	0.2	4.0	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Chromium	-0.009	0.10	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Manganese	0.004	0.10	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Iron	0.1	10.0	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Nickel	0.003	0.10	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Copper	0.004	0.10	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Zinc	0.004	0.40	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Arsenic	-0.06	0.15	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Selenium	-0.11	0.60	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Molybdenum	0.0002	0.06	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Silver	-0.0003	0.020	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Cadmium	-0.0006	0.020	μg/L	F206214	EPA 200.8 Moc	U
F206214-BLK1	Lead	0.00003	0.040	μg/L	F206214	EPA 200.8 Moc	U

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

PREPARATION BLANKS

Instrument: Hg2600-1

Sequence: 2F22007

Preparation: <u>BrCl Oxidation</u>

Lab Sample ID	Analyte	Found	MRL	Units	Batch	Method	Notes
F206277-BLK1	Mercury	0.003	0.50	ng/L	F206277	EPA 1631E	U
F206277-BLK2	Mercury	0.006	0.50	ng/L	F206277	EPA 1631E	U
F206277-BLK3	Mercury	0.005	0.50	ng/L	F206277	EPA 1631E	U
F206277-BLK4	Mercury	0.02	0.50	ng/L	F206277	EPA 1631E	QB-04, U
F206277-BLK5	Mercury	0.02	0.50	ng/L	F206277	EPA 1631E	U
F206277-BLK6	Mercury	2.22	9.90	ng/L	F206277	EPA 1631E	QB-08, U

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Siska, Project Manager

Page 14 of 15 1206226 Final Report 06/29/2012

Bothell, WA 98011 Ph: 425-686-1996 Fx: 425-686-3096

Notes and Definitions

U	Analyte included in the analysis, but not detected
QM-02	The MS and/or MSD recoveries outside acceptance limits, due to spike concentration less than 1 times the sample concentration. The batch was accepted based on LCS and LCSD recoveries within control limits and, when analysis permits, acceptable AS/ASD.
QB-08	The blank was preserved to 100% BrCl rather than 1%. The control limit for blanks preserved to greater than 1% BrCl is the preservation percentage multiplied by the MRL.
QB-04	The blank was preserved to 2% BrCl rather than 1%. The control limit for blanks preserved to greater than 1% BrCl is the preservation percentage multiplied by the MRL.
FB-1631	Required equipment/field/filter blank not submitted by the client. The sample has been analyzed according to 1631E, but does not meet 1631E criteria
AS	This MS and/or MSD is an analytical spike and/or an analytical spike duplicate.
DET	Analyte Detected
MDL	Minimum Detection Limit
MRL	Minimum Reporting Limit
ND	Analyte Not Detected at or above the reporting limit
wet	Sample results reported on a wet weight basis
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Frontier Global Sciences, Inc.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Liz Sisha

Relative Standard Deviation

RSD

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

METALS: 8 RCRA 13 PP FE, MN PB, CU OTHER METALS: DISSOLVED METALS FIELD FILTERED? VES NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT) AI, As, Ag, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Mo, N Se, and Zn Please send metals to Frontier for analysis by Method 200.8 MOD (ICP-MS with Collision cell) NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT) AI, As, Ag, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Mo, N Se, and Zn Please send metals to Frontier for analysis by Method 200.8 MOD (ICP-MS with Collision cell) NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT) AI, As, Ag, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Mo, N Se, and Zn Please send metals to Frontier for analysis by Method 200.8 MOD (ICP-MS with Collision cell)	METALS: 8 RCRA 13 PP OTHER METALS: 8 RCRA 13 PP OTHER METALS: 6 RCRA 13 PP OTHER METALS: 6 RCRA 13 PP OTHER METALS: 7 RCRA 13 PP OTHER METALS: 7 RCRA 13 PP OTHER METALS: 8 RCRA 13 PP OTHER METALS: 8 RCRA 13 PP OTHER METALS: 6 RCRA 13 PP OTHER METALS: 8 RCRA 13 PP OTHER METALS: 9 RCRA 13 PP	METALS: 8 RCRA OTHER METALS: OTHER METALS: OTHER METALS: FIELD F NOTES: (IE: SPECIAL DETECT AI, As, Ag, Cd, C Se, and Zn Please send me Method 200.8 IV Cell) SITE HISTORY: SUSPECTED CONTAMINATION:		TEHP (CE) VES NO CE ILE PH: Q OS	D BY:		PDF PDF	TIME:	REPORT PRELIMS: A FLECTRO NO FAX	Standard TAT Standard TAT REPOR PREUMS: IF YES: FLECTR NO FAX JIET, GZA () () () () () DATE: DATE:	DIET CO Star	DED: Sta	SH SH SH) 34 0 mg m	DATE NO PRESUMPT PRESUMPT RELINQUI			03103 WATER: ×	ZIP. XXIII	4/2012: 2/0 S	O6/14/2012: O6/14/2012: RA-NaOH; M-MEOH piler Vironmental, Inc Vironmental, Inc	Softened Stream B WW 06/14/2012: 2/0 S X X MATER: A-Air.: S-Soil: GW-Ground Water, SW-Surface Water, DW-Drinking Water, WW-Waste water, WW-Waste water, SW-Surface Water, DW-Drinking Water, WW-Waste water, SW-Surface Water, DW-Drinking Water, WW-Waste water, SW-Surface Water, DW-Drinking Water,	MATRIX: A-AIR: 5-50IL: GI WW-WASTE WAIT PRESERVATIVE: H-HCL; N-J PROJECT MANAGER: PROJECT MANAGER: COMPANY: G COMPANY: G COMPANY: G COMPANY: G COMPANY: BOULDED PROJECT #: PAUL: PED F.MAIL: POGR GWP, G QWP, G QWP, G QWP, G
# of Containers # Of Containers	Tem (Selliver	TOTAL COLIFORM E. COLI FECAL COLIFORM ENTEROCOCCI HETEROTROPHIC PLATE COUNT	TOTAL CYANIDE TOTAL SULFIDE REACTIVE CYANIDE REACTIVE SULFIDE FLASHPOINT IGNITABILITY	COD PHENOLS TOC DOC	TKN NH ₃ T. Phos. O. Pho	NO ₂ NO ₃ NO ₃ NO ₂ BOD CBOD T. ALK.	TS TSS TDS SPEC. CON. BR CI F SO4	DISSOLVED METALS (LIST BELOW) TOTAL METALS (LIST BELOW)	TCLP 1311 ABN METALS VOC PEST HERB	OIL & GREASE 1664 TPH 1664	PEST 608 PCB 608 PEST 8081A PCB 8082	TPH8100 LI L2 8015B DRO MEDRO MAEPH	8270D 625 SYTICS ABN A BN PAH	8015B GRO MEGRO MAYPH	1, 4 DIOXANE EDB DBCP 8021B BTEX HALOS	524.2 524.2 BTEX 524.2 MTBE ONLY 8260B 624 VTICs	GRAB /* COMPOSITI	MATRIX (SEE BELOW	SAMPLING DATE/TIME * F COMPOSITE, INDICATE BOTH START & FINISH DATE/TIME	STAR DA	SAMPLE I.D.	SAZ

STOTERS DESCRIPTION OF THE STORY OF THE STOR

Paul Pepler GZA GeoEnvironmental, Inc. (NH) 380 Harvey Road Manchester, NH 03103

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 111126

Client Identification: PSNH-MK

Date Received: 6/8/2012

Dear Mr. Pepler:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

< : "less than" followed by the reporting limit

> : "greater than" followed by the reporting limit

%R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

Le.15.12

Date

of pages (excluding cover letter)

EAI ID#: 111126

Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: PSNH-MK

Temperature upon receipt (°C): 5

Received on ice or cold packs (Yes/No): Y

Acceptable temperature range (°C): 0-6

Lab ID

Date Date Sample % Dry

Received Sampled Matrix Weight Exceptions/Comments (other than thermal preservation)

Sample ID 111126.01 Non-contact Cooling Water

6/8/12 6/7/12 aqueous Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis. All results contained in this report relate only to the above listed samples.

References include:

- 1) EPA 600/4-79-020, 1983
- 2) Standard Methods for Examination of Water and Wastewater: Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998
- 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- 4) Hach Water Analysis Handbook, 2nd edition, 1992

LABORATORY REPORT

EAI ID#: 111126

Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: PSNH-MK

Sample ID:

Non-contact

Cooling Water

Lab Sample ID:

111126.01

0.007

Selenium

Matrix: aqueous Date Sampled: 6/7/12 Date Received: 6/8/12 < 0.05 Aluminum Arsenic 0.003 Boron 7.8 Manganese 0.019 Mercury < 0.0001 Molybdenum 0.10

Analytical Matrix	Units	Date of Analysis	Method. A	nalyst
AqTot	mg/L	6/11/12	200.8	DS
AqTot	mg/L	6/11/12	200.8	DS
AqTot	mg/L	6/13/12	200.8	DS
AqTot	mg/L	6/11/12	200.8	DS
AqTot	mg/L	6/11/12	200.8	DS
AqTot	mg/L	6/11/12	200.8	DS
AaTot	ma/l	6/11/12	200.8	DS

EAI ID#: 111126

Client: GZA GeoEnvironmental, Inc. (NH)

Client Designation: PSNH-MK

				Date of		*
Parameter Name	Blank	LCS	LCSD	Units Analysis	Limits F	RPD Method
Aluminum	< 0.05	11 (101 %R)		mg/L 6/11/12	85 - 115	20 200.8
Arsenic	< 0.001	0.97 (97 %R)		mg/L 6/11/12	85 - 115	20 200.8
Boron	< 0.05	1.1 (112 %R)		mg/L 6/11/12	85 - 115	20 200.8
Manganese	< 0.005	1.0 (104 %R)		mg/L 6/11/12	85 - 115	20 200.8
Mercury	< 0.0001	0.0010 (103 %R)		mg/L 6/11/12	85 - 115	20 200.8
Molybdenum	< 0.001	1.0 (103 %R)		mg/L 6/11/12	85 - 115	20 200.8
Selenium	< 0.001	0.95 (95 %R)		mg/L 6/11/12	85 - 115	20 200.8

Parameter Name	MS/MSD Parent ID	MS/MSD Parent	Matrix Spike	MSD	Unite	Date of Analysis		RPD	Method
Parameter Name	raieiii ib	ratent	Wattix Spike	MOD	Offica	7111117010	Lillito	INI D	Metriod
Aluminum	111083.02	0.17	11 (95 %R)	11 (97 %R) (2 RPD)	mg/L	6/11/12	70-130	20	200.8
Arsenic	111083.02	< 0.001	0.98 (98 %R)	0.98 (98 %R) (0 RPD)	mg/L	6/11/12	70-130	20	200.8
Boron	111083.02	0.13	1.2 (106 %R)	1.2 (107 %R) (1 RPD)	mg/L	6/11/12	70-130	20	200.8
Manganese	111083.02	< 0.005	0.95 (95 %R)	0.96 (96 %R) (1 RPD)	mg/L	6/11/12	70-130	20	200.8
Mercury	111083.02	< 0.0001	0.0011 (105 %	0.0011 (104 %R) (1	mg/L	6/11/12	70-130	20	200.8
Molybdenum	111083.02	< 0.001	1.1 (105 %R)	1.1 (105 %R) (0 RPD)	mg/L	6/11/12	70-130	20	200.8
Selenium	111083.02	< 0.001	0.94 (94 %R)	0.92 (92 %R) (2 RPD)	mg/L	6/11/12	70-130	20	200.8

Samples were analyzed within holding times unless noted on the sample results page.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

Exceptions to the above statements are flagged or noted above or on the QC Narrative page.

^{*/!} Flagged analyte recoveries deviated from the QA/QC limits.

CHAIN-OF-CUSTODY RECORD

111126

Ø

:USTOMER_SERVICE@EAILABS.COM WWW.EAILABS.COM	25 CHENELL DRIVE CONCORD, NH 03301 TEL: 603.228.0525 1.800.287.0525 FAX: 603.228.4591 E-MAIL: CUSTOMER_SERVICE@EAILABS.COM WWW.EAILABS.COM (WHITE: Original GREEN: Project Manager)	professional laboratory services (WH
FIELD READINGS:	RELINQUISHED BY: DATE: TIME: RECEIVED BY:	
SUSPECTED CONTAMINATION:		OUOTE #:
SITE HISTORY:	(6/8/12/3/10 V)	REGULATORY PROGRAM: NPDES: RGP POTW STORMWATER OR GWP, OIL FUND, BROWNFIELD OR OTHER:
•	RELINQUISHED BY: DATE: TIME: RECEIVED BY:	STATE: NH MA ME VT OTHER:
•	Ken Kroh	PROJECT #:
Sample PH - 8.8 su		SITE MAYE: PSNH- MK
Al, As, B, Mn, Hg, Mo, Se,	PRESUMPTIVE CERTAINTY NO FAX E-MAIL PDF EQUIS	FAX:
NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT)	OR ELECTRONIC OPTIONS	PHONE: 603-232-8717 EXT.
DISSOLVED METALS FIELD FILTERED? YES NO	0	CITY: Manchester STATE: NH ZIP: 03103
1	ING LEVEL	ADDRESS: 380 Harvey Road
OTHER METALS.	REPORTING OPTIONS	COMPANY: GZA GeoEnvironmental, Inc.
METALS: 8 RCRA 3 PP FE, MN PB, CU		PROJECT MANAGER: Paul Pepler
		PRESERVATIVE: H-HCL; N-HNO3; S-H3SO4; Na-NaOH; M-MEOH
		MATRIX: A-AIP; S-SOIL; GW-GROUND WATER; SW-SURFACE WATER; DW-DRINKING WATER; WW-WASTE WATER
	X	×
	B270D 625 ABN A BN TPH8100 L1 B015B DRO ME PEST 608 PC PEST 8081A PC OIL & GREASE 1664 TCLP 1311 ABN VOC PEST H DISSOLVED METALS (LIST TS TSS TDS BA CI F NO2 NO3 NI BOD CBOD TKN NH3 T. PH T. Res. CHIG COD PHENOLS	
REACTIVE SOLIDE ABOLITY E. COLI E COUNT	I METALS EAB LIST BELOW) BELOW) SPEC. COM. SO, D,NO; T. ALK. PHOS. O. PHOS. RIME TOC DOC	EE BELOW) OMPOSITE 4.2 MTBE ONLY
MICRO OTHER		VC VC
	BOLD TIELDS REQUIRED. TLEASE CIRCLE REQUESTED ANALYSIS.	BOLD TIELDS

The second secon

4